Human Factors Techniques for the Design of the Virtual Mission Operations Center

Jeffrey Fox, Pacific Northwest National Laboratory

- R. Bane & P. Baker, Global Science & Technology
- J. Breed, NASA GSFC
- M. Baitinger, NEXGEN Solutions, Inc.

Sponsor

Julie Breed (Julie.Breed@gsfc.nasa.gov)

Data Systems Technology Division (Code 520)

Mission Operations and Data
Systems Directorate
NASA Goddard Space Flight
Center

Agenda

- NASA Mission Operations
- The VMOC Concept
- Human Factors Techniques
- Project Status

Mission Operations

Spacecraft:

Payloads & Subsystem

Users:

Scientific Needs

Mission Operations

Spacecraft:

Payloads & Subsystem

Operations Center:

Humans w/

Computer Support

Users:

Scientific Needs

Flight Operations Team (FOT)

Command Controller

Spacecraft Analysts and Engineers

Flight Supervisor

Support Staff As Needed

FOT Activities

- Mission Planning and Scheduling
- Command Management
- Test and Simulation
- Institutional Interface Support
- Operations (Real Time Passes)
 - Commanding Spacecraft
 - Fault Management

Operations Environment

- Current Environment
 - 7 x 24 Support
 - Unique and Dedicated Resources

- "Lights Out" Environment
 - (5x8) or 1 shift/day
 - On-call FOT
 - Multi-mission support

Consequences

- Support distributed teams
- Cost effective, yet
 - functional
 - reliable
 - secure
- Easy to use
- Flexible

Response -- VMOC

Virtual Mission Operations Center

- Goal: To work with mission operations staff to develop the future technology and workgroup computing concepts that will be needed to meet the new ground rules for mission operations.
- Objectives: Demonstrate, evaluate, and integrate advanced technologies which
 - Increase operator efficiency
 - Minimize use of dedicated resources

Concept of Virtual Operations

• People and resources are mapped according to skills, experience, and availability to meet the needs of a multiple mission, distributed, operations facility. They can be distributed, and may join in ad hoc groups to meet the occasional peak demands.

Human Factors in VMOC Design

Concept Definition

Proof of Concept

Development

Concept Definition (Phase I)

- Predefined Plan
 - Real-time Fault management
 - Heavy use of advanced AI tools
 - Support for group work
- Needs Assessment
 - Interviews
 - Literature review

Concept Definition (Phase I)

- Conceptual Prototyping
 - Implement basic VMOC concepts,
 - Demonstrate each prototype to users
 - Produce a prototype that can be used as a foundation for further development
- Environment
 - G2 expert system
 - Custom software

G2/IMT Development Environment

IMT Pass Plan

Concept Definition (Phase I)

Results

- Wheel spinning
- Long prototyping cycle
- Not much user support

Why?

- Always done this way
- Typical R&D organization
- Focus on technologies

Concept Definition (Phase I)

Automation

Groupware

Expert Systems

Concept Definition (Phase II)

- Interviews & Observations
 - GRO, EUVE, SAMPEX, Hubble Space Telescope
- Composition Graphs
 - Flowcharting methodology
 - Used to depict operations concepts

Composition Graphs Elements

ACTIVITIES SUB-ACTIVITIES TASK TASK ELEMENTS

A group of subactivities

Operations that are performed in response to a single event

Smallest Discrete unit of work

A single identifiable step in a task

Components

Coordinators

Task Description

Coordination Media

Macro Description

PNNL

Concept Definition (Real Needs)

- Scenario-Based Designed
 - Three Scenarios
 - Simple (Basic Management by Exception)
 - Moderate (Distributed Management by Exception)
 - Complex (Dynamic Distributed Management by Exception)
 - Descriptions
 - Text
 - Matrix

Scenario Matrix

SCENARIO 1

Activities	Tasks	Action by: Autonomous (A) Operator (O) Engineer (E)	Build # 1, 2, 3 Simulated (S) Future build (F)
Off-line activities	Open appropriate pass plan	0	1
	Translate activity requests into pass plan	A	1 (S)
	View and edit graphical pass plan	0	1
	Assign emergency support person	O	1 change pass plan 2 use team building tool to assign support
	Notify person of assignment	A	3
	Set plan to automatic execute mode	O	1
	Check rules for pass plan commands	A	2
	Save pass plan	0	1

Concept Definition (Real Needs)

- Steering Committee
 - Members
 - Actual Operations Staff
 - Volunteers
 - Responsibilities
 - Provide feedback
 - Attend review meetings

Concept Definition (Results)

Findings

- Not many anomalies, but when occur:
 - Not much time to respond to anomalies
 - Resolution requires team communication
- Lack of flexibility
- Lots of paperwork
- Changed Priorities
 - Highest payoff is automating routine tasks
 - Reducing workload and facilitating cooperative tasks

PNNL

Concept Definition (Results)

- More Formal Approach
- User-centered participatory design

Use a 'design-build-test-revise' process

Concept Definition (Results)

Expert Systems

Automation Groupware

Reengineering

Proof of Concept (Method)

- Needs
 - Feedback from previous phase
 - Iterations of scenarios
- Cooperative Prototyping
 - Highly interactive and interactive
 - Demonstrate new features
 - Demonstrate revised designs
 - Collect feedback

Initial Groupware Prototype

Proof of Concept (Results)

User By-In

More realistic Designs

Enthusiasm on Development Team

Development (Method)

- Needs
 - Feedback from previous phase
 - Iterations of scenarios
- High-Fidelity Prototyping
 - Cooperative
 - Ok'ed --> Operational
 - Expert review
 - User walkthroughs
- Trail-by-Fire

Development (Results)

- First Success TRACE I & T
- Interest from other missions

Current Design

- Groupware-based solution
- Web access
- Automated logging and report generation
- On-line staff scheduling and resource management
- On-line documentation
- Communications alternatives

Current Design

Development Status and Plans

- 7/97
 - Ground System I&T Anomaly Database Operational
- 8/97
 - Support TRACE Thermal Vac Testing (Shadow Mode)
- 9/97
 - Release 1 (TRACE Critical Path)
- 3/97
 - Operational

Conclusions

- Each human factors technique is useful
- High impact on program
 - improved design
 - Refocused project